A Morphism Double Category and Monoidal Structure

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When does a category built on a lattice with a monoidal structure have a monoidal structure?

In a word, sometimes. And it gets harder if the structure on L is not commutative. In this paper we consider the question of what properties are needed on the lattice L equipped with an operation * for several different kinds of categories built using Sets and L to have monoidal and monoidal closed structures. This works best for the Goguen category Set(L) in which membership, but not equality,...

متن کامل

The symmetric monoidal closed category of cpo $M$-sets

In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.

متن کامل

A Note on Actions of a Monoidal Category

An action ∗ : V × A−→ A of a monoidal category V on a category A corresponds to a strong monoidal functor F : V−→ [A,A] into the monoidal category of endofunctors of A. In many practical cases, the ordinary functor f : V−→ [A,A] underlying the monoidal F has a right adjoint g; and when this is so, F itself has a right adjoint G as a monoidal functor—so that, passing to the categories of monoids...

متن کامل

Signed Exceptional Sequences and the Cluster Morphism Category

We introduce signed exceptional sequences as factorizations of morphisms in the cluster morphism category. The objects of this category are wide subcategories of the module category of a hereditary algebra. A morphism [T ] : A → B is an equivalence class of rigid objects T in the cluster category of A so that B is the right hom-ext perpendicular category of the underlying object |T | ∈ A. Facto...

متن کامل

A Monoidal Category for Perturbed Defects in Conformal Field Theory

Starting from an abelian rigid braided monoidal category C we define an abelian rigid monoidal category CF which captures some aspects of perturbed conformal defects in two-dimensional conformal field theory. Namely, for V a rational vertex operator algebra we consider the charge-conjugation CFT constructed form V (the Cardy case). Then C = Rep(V ) and an object in CF corresponds to a conformal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra

سال: 2013

ISSN: 2314-4106,2314-4114

DOI: 10.1155/2013/460582